

Overview of Biorefinery Concepts and Basics for Their Greenhouse Gas Balance

G. Jungmeier, F. Cherubini

IEA Bioenergy Task 38: Greenhouse Gas Balances of Biomass and Bioenergy Systems

International Workshop in Cooperation with the Salzburg State Government

"Transportation Biofuels: For greenhouse gas mitigation, energy security or other reasons ?"

5 February 2008, Salzburg, Austria

Source: IPCC 2007

Greenhouse Gas Emissions in Austrian Transportsector

- 24 Mio. t GHG/a from transportation sector
- 26% Share of total Austrian GHG-emissions
- 83% Increase between 1990/2006
- Most rapid increasing sector

European Roadmap for Biofuels

Vision 2030: 25% Biofuels

Source: Biofuels in the European Union – A vision for 2030 and beyond, Final report of the Biofuels Research Advisory Council, June 2006

What is a "Biorefinery"?

IEA Bioenergy

Task 42 on Biorefineries

Source: Lenzing, 2007

WOOD: First Process it - then Burn it

The final poducts are

technology-intensive!
 capital-intensive !
 labour-intensive!
 export-intensive!

Lignin:

calorific value 25 – 26 MJ/kg (aromates)

Cellulose, hemicelluloses: calorific value 16 – 18 MJ/kg (hydrocarbons)

Austrian Concept "Green Biorefinery Austria"

JOANNEUM

RESEARCH

Demonstration-Plant "Green Biorefinery"

- Location: Uztenaich in Upper-Austria
- Attached to existing biogas plant 500 kW_e
- Capacity: processing silage from 100 ha with 10 t_{DM}/(ha*a)
- Investment: 1.7 Mio. €
- Operating costs for 3 years: 1.5 Mio. €
- Start up: 2008

" WILTI-Platform" Transportation Biofuel Oriented Integrated Biorefinery Concepts

Biorefinery-Systems with Main R&D Focus

IEA Bioenergy

Task 42 on Biorefineries

- 1. "Lignocellulosic biorefinery", based on wood and straw
- 2. "Whole crop biorefinery", based on raw materials like grains and maize (whole crop)
- 3. "Green biorefinery", based on Grass
- 4. "Two-platform-biorefinery", with sugar and syngas platforms

According to

- ISO 14 040 "Life Cycle assessment"
- Standard Methodology of IEA Bioenergy Task 38 "Greenhouse Gas Balances of Bioenergy systems"
- Recommendations of COST Action E9 "Life Cycle Assessment of Forestry and Forest Products"

Criteria for Environmental Evaluation

Greenhouse gas emissions [t CO₂-eq.] including

- \checkmark Carbon dioxide (1 kg CO₂ = 1 kg CO₂-eq)
- ✓ Methane (1 kg CH_4 = 23 kg CO_2 -eq)
- \checkmark Nitrous oxide (1 kg N₂O = 296 kg CO₂-eq)

Cumulated primary energy demand [PJ_{primary energy}] shared in

✓ Biomass (e.g. wood, straw)

JOANNEUM

- ✓ Fossil energy (e.g. oil, coal, natural gas)
- ✓ Others (e.g. hydro power, waste, nuclear)

Indicators for environmental evaluation

✓ Specific GHG reduction [t CO_2 -eq/t_{biomass}] or [t CO_2 -eq/ha]

✓ Specific fossil energy reduction [TJ_{fossil energy}/t_{wood}]

JOANNEUMProcess System:
Wood Bioethanol Biorefinery

LCA of Wood Bioethanol Biorefinery

System Description for Example Environmental Evaluation

Systems	Supplied energy services			
	Heat	Electricity	Transportation service *)	Phenols
	110 GWh/a	175 GWh/a	1,000 Mio. km/a	5,600 t/a
Wood bioethanol biorefienery	wood			
Wood polygeneration, con. phenols	wood			oil
Wood CHP **), gasoline, con. phenols	wood		gasoline	oil
Wood heating, natural gas, gasoline, con. phenols	wood	natural gas	gasoline	oil
Fossil reference system	oil	natural gas	gasoline	oil
*) Bioethanol: 100.000 t/a **) Combined heat and power				

Comparison Wood to Bioethanol Biorefinery and Polygeneration

Comparison Wood to Bioethanol Biorefinery and Polygeneration

Functional Units for Environmental Evaluation

Each system provides:

- Electricity: 175 GWh/a
- Transportation service: 1,000 Million km/a (based on 100 kt/a of bioethanol for passenger car)
- Phenols: 5,600 t/a
- Heat: 110 GWh/a

Greenhouse Gas Emissions

Cumulated Primary Energy Demand

JOANNEUM

RESEARCH

Indicator for Environmental Evaluation: Specific GHG Reduction

Specific Greenhouse Gas Emissions Reduction [t CO₂-eq./t_{wood}]

Indicator for Environmental Evaluation: Specific Fossil Fuel Reduction

Indicator for Environmental Evaluation: Trade Off (I)

Indicator for Environmental Evaluation: Trade Off (II)

Indicators developed for environmental evaluation CO₂-eq and fossil fuel saving (specific/absolut terms)

Evaluation of biorefinery systems is complex

"Multi-platform biorefinery system" might be biorefinery complex of the future

Many different biorefinery systems – focus on transportation biofuels orientated systems