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Overview
• Policy context: EISA/LCFS/RTFO etc.
• GWI as an implementation tool

GHG/MJ vs. warming vs. social cost: these are different
ILUC and physical property measurement

• Lessons from decision theory: 
– Implementation GWI values are acts
– Physical GWI, and system response, are states of the 

world 
• The cost of error function for biofuels GWI
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Asking the right question

• How can we enrich farmers, Monsanto, and 
ADM?

• How should we reduce the GW index of liquid 
transportation fuel?

• What’s the best use of biomass for energy?
• What’s the best use of biomass?

– What does best mean?
• What’s the best use of a hectare of land?
Policy context dictates the question, and the 

answers are not usually the same
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Policy Context
• Agricultural subsidies and tariffs
• EISA/EPA, EC (statute)

– Volume mandate
– Biofuels in categories (advanced, etc.) on the basis of 

GWI
– LUC in statute, may be overridden by climate bill

• California LCFS/ARB (exec. order)
– Average carbon intensity limit
– All fuels assigned a GWI
– LUC included 
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LCFS is not just about GW
• WHEREAS California's dependence on a single type of 

transportation fuel whose price is highly volatile imperils our economic 
security, endangers our jobs, and jeopardizes our industries; and

• WHEREAS diversification of the sources of transportation fuel will 
help protect our jobs and economy from the consequences of oil price 
shocks; and

• WHEREAS alternative fuels can provide economic development 
opportunities and reduce emissions of greenhouse gases, criteria 
pollutants, and toxic air contaminants.
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GWI in the LCFS
• For producer j in year t who blends Qi units of 

fuel with GHI index Gi, the fine (or sale of 
credits) Cjt when the standard is St will be:

  tjttjt

bbppjt

PQAFCISC

QGQGAFCI





P = price of credits (+/- sold or bought) (or fine)
p = petroleum, b = biofuel

Much of the current debate is about the 
operational definition of Gb



Operational Definition

The operational definition of a quantity or 
measurement includes the protocol by 
which it is observed. 

eg: the “height” of a building can be determined 
(with different results for each) by 

• altimeter
• tape measure
• trigonometry
• dropping a clock from the top
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ILUC in the LCFS
• For producer j in year t who blends Qi units of fuel with 

GHI index Gi, the fine (or sale of credits) when the 
standard is St will be:

  tjttjt

bb
d

ppjt

PQAFCISC

QiLUCGQGAFCI



 }{

p = petroleum, b = biofuel



LCFS Example
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Reduction required 10%
(Gasoline 96       86)

Blend limit for ethanol 20%

GWIb required 45



What is Gx?

• Implicitly, the additional GHG released if 
one MJ of fuel x is made and used and 
“nothing else” is different

but
• This can never actually happen
• GHG is not the same as GW
• GW is not the same as social cost
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A brief review of ILUC
estimates
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Note: “direct” emissions are also uncertain
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Study Target year Shock size

(109 L)

ILUC factor 
(g CO2e MJ-1)

Range 
(g CO2e MJ-1)

Searchinger et al. 2008 2016 56 104 20 – 200a

Hertel et al. 2010 2001b 50 27 15 – 90c

Dumortier et al. 2009 2018/19 30 n/a 21 – 118d

USEPA 2010

2012 7.5 81 62 – 104e

2017 14 58 43 – 76e

2022 10 34 25 – 45e

Al-Riffai et al. 2010 2020f 0.47 36 36 – 53g

Tyner et al. 2010 2015h 13.4 14 14-22i
a Calculated from reported sensitivity results.
b Analysis was performed using the GTAP-6 database, based on 2001 data, but the results were adjusted post facto to account for the 10% greater 
average corn yield in 2010.
c Range is based on a combination of high and low values for various uncertain economic model parameters.
d Range is based on evaluating alternative model assumptions.
e Range is 95% CI around mean considering only the uncertainty in satellite data analysis and carbon accounting.
f Analysis was performed using the GTAP-7 database, based on 2004 data, using the model to project out to 2020.
g Effect of additional 106 GJ after meeting 5.6% mandate. Higher value is for greater trade liberalization.
h 2006 GTAP database, yield increases assumed
iRange is from different model assumptions only.

US Corn Ethanol ILUC Estimates: 30 yr straight-line amortization

From Plevin et al 2010

Mean = 51
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How might these ILUC 
results be too high/low?

• Higher lower (climate change) yields of all crops 
• Different allocations of “makeup” to different natural lands
• Better C stock & land use data
• Better coproduct accounting 
• Counting C recapture after production
• Albedo changes (eg, snow on cleared temperate forest land)
• Nitrogen cycle (increase from fertilizer decrease from cattle)
• Time and warming effect
• Better modeling of forests and unmanaged land
• Other greenhouse gases (eg, cattle, rice methane)
• Production period
• More conversion from lower-C land types (pasture)
• Increased cattle intensity/better practice
• Higher/lower price elasticity of yields



Campinas IX/11  O'Hare 15

(from Hertel et al 2010)

15b gal US Corn Ethanol

Forest

Pasture

Land use change is not 1:1 with feedstock  land use



Campinas IX/11  O'Hare 16

Uncertainty
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Lesson Ia

• There is no support for believing ILUC = 0
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Lesson Ib

• ILUC will be uncertain for the foreseeable 
future; other indirect GW terms more so.



Regulation and observation

• The physical GWI of a fuel i (G*
i) includes 

both lab-measurable, high-accuracy, high-
precision terms and modeled, low-
accuracy, high-variance terms (like ILUC)

• The administrative GWI (Gi) in a particular 
regulatory context is not the same as G*i
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GWI values 
published

Blenders choose mix

Vehicle emissions 
change

Other prices, markets 
respond

Fuel prices 
respond

Other 
emissions 

change

Other things change

Government Fuel system Other systems

Climate changes
V (social 

cost) 

Response



Decision Theory
• Act: ‘Implement’ a vector of values {Gi } for 

fuels i, that blenders will respond to. 
What LCFS doesn’t recognize: 

• State of world: [{G*i }, R{Gi }], where
– G* is actual value, 
– R is response of system.

• Max E(V( {Gi }, [{G*i }, R{Gi }] ), where
– V is net benefit
– G*, R have probability distributions 
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Decision Theory
• Act: ‘Implement’ a vector of values {Gi } for fuels i, 

that blenders will respond to. 

What policy doesn’t recognize (yet?): 
• State of world: [{G*i }, R{Gi }], where

– G* is actual value, 
– R is response of system.

• Max E(V( {Gi }, [{G*i }, R{Gi }] ), where
– V is net benefit
– G*, R have probability distributions 
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V , R
What should policy 
maximize?
What kind of cost matters?
What is the cost of being 
“wrong”
about  G*i  in each direction?

E
How should policy recognize
uncertainty?



Key decision questions

• Are high values of Gi* more likely than 
small ones (long right tail)?

• Is it worse to overestimate Gi*  by 10 g 
than to underestimate it?
– Irreversible ILUC releases
– Biodiversity
– Future biofuel infrastructure development
– Undercut advantage for greener [bio]fuels
– Etc.
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Most likely value

Optimal values for
Indicated cost functions
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From Plevin et al 
2010
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Searchinger LUC term

GTAP LUC term

g/MJ (linear amortization, 30 yr)

Model Uncertainty and Parameter Uncertainty

Gasoline – direct ethanol

UC/Purdue
Maize ethanol 

Searchinger
Maize ethanol

EPA
EPA



Theory-practice gaps

• No unitary decisionmaker, varying data 
reference sets, so conflicting pdf’s

• V function varies across experts, 
stakeholders: politics 

• V has not been sufficiently studied
• Three grounds of legitimacy:

– Process
– Scientific
– Political

Campinas IX/11  O'Hare 27



Campinas IX/11  O'Hare 28

What action should be
optimized?

(1) “Best” estimate of GWI for a pathway, 
assuming 1:1 substitution of fuels.

(2) “Best” value to use in regulation, 
assuming the world’s most likely reaction 
to it .

These are not necessarily the same number, 
no matter what “best” means.  Maximize:

     }{,*, iii GRGGVEO 



Other regulatory practice 
accommodates uncertainty and 
distinctive cost-of-error functions

• Food and drug
• Structural and civil engineering
• Traffic safety
• Banking and finance
• Etc

Not all offer good examples, but all illustrate options to 
adapt.
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Heuristics
• Let individuals choose, with information
• Choose on the “safe side” (~safety factor) 

considering shape of V
• Minimax loss or similar rule
• Choose central estimator and let the chips 

fall where they may
• Robust policy (choices insensitive to 

variation) such as “no seed-based biofuel”. 
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Key issues
• PDF of G* is asymmetric, with long right 

tail (Plevin et al)
• V may be 

– symmetric: same cost for “too much GHG” 
from over- or underuse of biofuel

– Asymmetric: irreversible effects only on one 
side, etc.

– Non-linear
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Lesson II

• Even assuming GHG discharge 
minimization is the objective, optimal Gi
(policy implementation) requires attention 
to the shape of the distribution of G*i and 
to the cost of being wrong.
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Actually, we don’t even care 
about GHG per se (perhaps 
for ocean acidification) but 
about warming; what does that 
say about V?
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Considerations for the 
cost of error

• ILUC discharges are irreversible on a scale of decades, 
no matter how short a period of biofuel production 
causes them.

• An ungreen biofuel economy now may develop 
infrastructure for the green “advanced” biofuel (algae, 
cellulosic) economy of the future

• Other dimensions of social cost (employment, 
biodiversity, water, etc.) should be included? (A climate 
policy is not a Christmas Tree for every good cause)

• If a narrow view is taken -- climate effects only -- should 
rebound (“indirect petroleum use change”) be counted?
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Time and discharge
profiles

(see O’Hare et al 2010)



Time issues
• Realistic production period

– For each fuel
– Until substitutes are more attractive in the market

• If we calculate cumulative warming, not just 
emissions,recognizing when discharge occurs, 
summing GHG discharges for each fuel is 
misleading.

• Distinguish afforestation (slow) from deforestation 
(fast) discharges/recharges

• Discount economic quantities, not physical ones
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Discounting
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January

June

What is the “present quantity”
in January of a bucket of
water for use in…
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Summary
• Regulatory optimal value is probably not the 

same as scientific “most likely” estimate
• GHG discharge total is not the same as warming 

or social cost
– Time profiles matter
– Reversibility matters

• Uncertainty in estimates is refractory
• Policy regularly accommodates uncertainty
• Land use change and the effects of time are 

more general than biofuels
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Your 
thoughts?


