Biofuels Policymaking for Refractory Uncertainty

Michael O'Hare

Goldman School of Public Policy Univ. of California, Berkeley ohare@berkeley.edu

Campinas IX/11 O'Hare

The research presented here was partially supported by the California Air Resources Board and does not necessarily represent positions of ARB or the University of California.

Overview

- Policy context: EISA/LCFS/RTFO etc.
- GWI as an implementation tool GHG/MJ vs. warming vs. social cost: these are different ILUC and physical property measurement
- Lessons from decision theory:
 - Implementation GWI values are acts
 - Physical GWI, and system response, are states of the world
- The cost of error function for biofuels GWI

Asking the right question

- How can we enrich farmers, Monsanto, and ADM?
- How should we reduce the GW index of liquid transportation fuel?
- What's the best use of biomass for energy?
- What's the best use of biomass?

- What does best mean?

• What's the best use of a hectare of land?

Policy context dictates the question, and the answers are not usually the same

Policy Context

- Agricultural subsidies and tariffs
- EISA/EPA, EC (statute)
 - Volume mandate
 - Biofuels in categories (advanced, etc.) on the basis of GWI
 - LUC in statute, may be overridden by climate bill
- California LCFS/ARB (exec. order)
 - Average carbon intensity limit
 - All fuels assigned a GWI
 - LUC included

LCFS is not just about GW

- WHEREAS California's dependence on a single type of transportation fuel whose price is highly volatile imperils our economic security, endangers our jobs, and jeopardizes our industries; and
- WHEREAS diversification of the sources of transportation fuel will help protect our jobs and economy from the consequences of oil price shocks; and
- WHEREAS alternative fuels can provide economic development opportunities and reduce emissions of greenhouse gases, criteria pollutants, and toxic air contaminants.

GWI in the LCFS

 For producer *j* in year *t* who blends Q_i units of fuel with GHI index G_i, the fine (or sale of credits) C_{it} when the standard is S_t will be:

$$AFCI_{jt} = G_p Q_p + G_b Q_b$$
$$C_{jt} = \left(S_t - AFCI_{jt}\right)PQ_t$$

p = petroleum, *b* = biofuel *P* = price of credits (+/- sold or bought) (or fine)

Much of the current debate is about the operational definition of G_b

Campinas IX/11 O'Hare

Operational Definition

- The *operational definition* of a quantity or measurement includes the protocol by which it is observed.
- eg: the "height" of a building can be determined (with different results for each) by
- altimeter
- tape measure
- trigonometry
- dropping a clock from the top

ILUC in the LCFS

• For producer *j* in year *t* who blends Q_i units of fuel with GHI index G_i , the fine (or sale of credits) when the standard is S_t will be:

$$AFCI_{jt} = G_p Q_p + \{G^d_b + iLUC\}Q_b$$
$$C_{jt} = (S_t - AFCI_{jt})PQ_t$$

p = petroleum, b = biofuel

LCFS Example

Reduction required10%(Gasoline $96 \rightarrow 86$)

Blend limit for ethanol 20%

 GWI_{b} required 45

What is G_x ?

• Implicitly, the additional GHG released if one MJ of fuel x is made and used and

"nothing else" is different

but

- This can never actually happen
- GHG is not the same as GW
- GW is not the same as social cost

A brief review of ILUC estimates

Note: "direct" emissions are also uncertain

US Corn Ethanol ILUC Estimates: 30 yr straight-line amortization

Study	Target year	Shock size (10 ⁹ L)	ILUC factor (g CO ₂ e MJ ⁻¹)	Range (g CO ₂ e MJ ⁻¹)
Searchinger et al. 2008	2016	56	104	$20 - 200^{a}$
Hertel et al. 2010	2001 ^b	50	27	15 – 90°
Dumortier et al. 2009	2018/19	30	n/a	21 - 118 ^d
USEPA 2010	2012	7.5	81	62 – 104 ^e
	2017	14	58	$43 - 76^{e}$
	2022	10	34	$25 - 45^{e}$
Al-Riffai et al. 2010	2020 ^f	0.47	36	36 – 53 ^g
Tyner et al. 2010	2015 ^h	13.4 Mean	= ₁ 51	14-22 ⁱ

^a Calculated from reported sensitivity results.

^b Analysis was performed using the GTAP-6 database, based on 2001 data, but the results were adjusted *post facto* to account for the 10% greater average corn yield in 2010.

^c Range is based on a combination of high and low values for various uncertain economic model parameters.

^d Range is based on evaluating alternative model assumptions.

^e Range is 95% CI around mean considering only the uncertainty in satellite data analysis and carbon accounting.

^f Analysis was performed using the GTAP-7 database, based on 2004 data, using the model to project out to 2020.

⁹ Effect of additional 10⁶ GJ after meeting 5.6% mandate. Higher value is for greater trade liberalization.

^h 2006 GTAP database, yield increases assumed

ⁱRange is from different model assumptions only.

How might these ILUC results be too high/low?

- Higher lower (climate change) yields of all crops
- Different allocations of "makeup" to different natural lands
- Better C stock & land use data
- Better coproduct accounting
- Counting C recapture after production
- Albedo changes (eg, snow on cleared temperate forest land)
- Nitrogen cycle (increase from fertilizer decrease from cattle)
- Time and warming effect
- Better modeling of forests and unmanaged land
- Other greenhouse gases (eg, cattle, rice methane)
- Production period
- More conversion from lower-C land types (pasture)
- Increased cattle intensity/better practice
- Higher/lower price elasticity of yields

Land use change is not 1:1 with feedstock land use

Uncertainty

US Corn Ethanol ILUC Estimates: 30 yr straight-line amortization

Study	Target year	Shock size (10 ⁹ L)	ILUC factor (g CO ₂ e MJ ⁻¹)	Range (g CO ₂ e MJ ⁻¹)
Searchinger et al. 2008	2016	56	104	20 - 200 ^a
Hertel et al. 2010	2001 ^b	50	27	15 – 90°
Dumortier et al. 2009	2018/19	30	n/a	21 – 118 ^d
USEPA 2010	2012	7.5	81	62 – 104 ^e
	2017	14	58	43 – 76 ^e
	2022	10	34	25 – 45 ^e
Al-Riffai et al. 2010	2020 ^f	0.47	36	36 – 53 ^g
Tyner et al. 2010	2015 ^h	13.4	14	14-22 ⁱ

Mean = 51

^a Calculated from reported sensitivity results.

^b Analysis was performed using the GTAP-6 database, based on 2001 data, but the results were adjusted *post facto* to account for the 10% greater average corn yield in 2010.

^c Range is based on a combination of high and low values for various uncertain economic model parameters.

^d Range is based on evaluating alternative model assumptions.

^e Range is 95% CI around mean considering only the uncertainty in satellite data analysis and carbon accounting.

^f Analysis was performed using the GTAP-7 database, based on 2004 data, using the model to project out to 2020.

⁹ Effect of additional 10⁶ GJ after meeting 5.6% mandate. Higher value is for greater trade liberalization.

^h 2006 GTAP database, yield increases assumed

Range is from different model assumptions only.

Lesson la

• There is no support for believing ILUC = 0

Lesson Ib

• ILUC will be uncertain for the foreseeable future; other indirect GW terms more so.

Regulation and observation

- The physical GWI of a fuel *i* (*G*^{*}_i) includes both lab-measurable, high-accuracy, highprecision terms and modeled, lowaccuracy, high-variance terms (like ILUC)
- The administrative GWI (G_i) in a particular regulatory context is **not the same** as G_i^*

Decision Theory

- Act: 'Implement' a vector of values {G_i} for fuels *i*, that blenders will respond to.
 What LCFS doesn't recognize:
- State of world: $[\{G_i^*\}, R\{G_i\}]$, where
 - $-G^*$ is actual value,
 - *R* is response of system.
- Max E($V(\{G_i\}, [\{G_i^*\}, R\{G_i\}])$, where
 - V is net benefit
 - $-G^*$, R have probability distributions

Decision Theory

• Act: 'Implement' a vector of values $\{G_i\}$ for fuels *i*, that blenders will respond to.

What policy doesn't recognize (yet?):

- State of world: $[\{G_i^*\}, R\{G_i\}]$, where
 - G* is actual value,
 - *R* is response of system.
- Max $E(V(\{G_i\}, [\{G_i\}, R\{G_i\}]), where$
 - V is net benefit
 - G*, R have probability distributions

V, R What should policy maximize? What kind of cost matters? What is the cost of being "wrong" about G^{*}_i in each direction?

E How should policy recognize uncertainty?

Key decision questions

- Are high values of G^{*}_i more likely than small ones (long right tail)?
- Is it worse to overestimate G^{*}_i by 10 g than to underestimate it?
 - Irreversible ILUC releases
 - Biodiversity
 - Future biofuel infrastructure development
 - Undercut advantage for greener [bio]fuels
 - Etc.

Model Uncertainty and Parameter Uncertainty

Theory-practice gaps

- No unitary decisionmaker, varying data reference sets, so conflicting pdf's
- V function varies across experts, stakeholders: politics
- V has not been sufficiently studied
- Three grounds of legitimacy:
 - Process
 - Scientific
 - Political

What action should be optimized?

- (1) "Best" estimate of GWI for a pathway, assuming 1:1 substitution of fuels.
- (2) "Best" value to use in regulation, assuming the world's most likely reaction to it .

These are not necessarily the same number, no matter what "best" means. Maximize:

 $O = E[V(\{G_i\}, \{G^*\}, \{G^*\}, R\{G_i\})]$

Other regulatory practice accommodates uncertainty and distinctive cost-of-error functions

- Food and drug
- Structural and civil engineering
- Traffic safety
- Banking and finance
- Etc

Not all offer good examples, but all illustrate options to adapt.

Heuristics

- Let individuals choose, with information
- Choose on the "safe side" (~safety factor) considering shape of V
- Minimax loss or similar rule
- Choose central estimator and let the chips fall where they may
- Robust policy (choices insensitive to variation) such as "no seed-based biofuel".

Key issues

- PDF of G* is asymmetric, with long right tail (Plevin et al)
- V may be
 - symmetric: same cost for "too much GHG" from over- or underuse of biofuel
 - Asymmetric: irreversible effects only on one side, etc.
 - Non-linear

Lesson II

 Even assuming GHG discharge minimization is the objective, optimal G_i (policy implementation) requires attention to the shape of the distribution of G^{*}_i and to the cost of being wrong. Actually, we don't even care about GHG *per se* (perhaps for ocean acidification) but about warming; what does that say about *V*?

Considerations for the cost of error

- ILUC discharges are irreversible on a scale of decades, no matter how short a period of biofuel production causes them.
- An ungreen biofuel economy now may develop infrastructure for the green "advanced" biofuel (algae, cellulosic) economy of the future
- Other dimensions of social cost (employment, biodiversity, water, etc.) should be included? (A climate policy is not a Christmas Tree for every good cause)
- If a narrow view is taken -- climate effects only -- should rebound ("indirect petroleum use change") be counted?

Time and discharge profiles

(see O'Hare et al 2010)

Campinas IX/11 O'Hare

Time issues

- Realistic production period
 - For each fuel
 - Until substitutes are more attractive in the market
- If we calculate cumulative warming, not just emissions, *recognizing when discharge occurs,* summing GHG discharges for each fuel is misleading.
- Distinguish afforestation (slow) from deforestation (fast) discharges/recharges
- Discount economic quantities, not physical ones

Discounting

What is the "present quantity" in January of a bucket of water for use in...

January

Corn ethanol: 25 yrs production, 60g direct emissions, 776 g LUC, 30 yrs recovery of 50% of LUC

http://rael.berkeley.edu/BTIME

Campinas IX/11 O'Hare

Corn ethanol: 25 yrs production, 60g direct emissions, 776 g LUC, 30 yrs recovery of 50% of LUC

http://rael.berkeley.edu/BTIME

Campinas IX/11 O'Hare

FWP(t) is total warming up to time t

Summary

- Regulatory optimal value is probably not the same as scientific "most likely" estimate
- GHG discharge total is not the same as warming or social cost
 - Time profiles matter
 - Reversibility matters
- Uncertainty in estimates is refractory
- Policy regularly accommodates uncertainty
- Land use change and the effects of time are more general than biofuels

References

O'Hare, M., R.J. Plevin, J.I. Martin, A.D. Jones, A. Kendall, E. Hopson, "Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum". *Env. Res. Lett.* 4 (2009)

Plevin, R., M. O'Hare, A.D. Jones, M.S. Torn, H. K. Gibbs, "Greenhouse Gas Emissions from Biofuels'Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously Estimated". Env. Sci . Technol. 44 (2010)

Hertel, T, A. Golub, A.D. Jones, M.O'Hare, R.J. Plevin, D. M. Kammen, "Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-mediated Responses". *Bioscience* 60 #3 2010.

